Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Ticks Tick Borne Dis ; 14(5): 102202, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244157

RESUMO

Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Animais , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doença de Lyme/veterinária
2.
PLoS One ; 17(11): e0277420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36378663

RESUMO

Helminth infections are cryptic and can be difficult to study in wildlife species. Helminth research in wildlife hosts has historically required invasive animal handling and necropsy, while results from noninvasive parasite research, like scat analysis, may not be possible at the helminth species or individual host levels. To increase the utility of noninvasive sampling, individual hosts can be identified by applying molecular methods. This allows for longitudinal sampling of known hosts and can be paired with individual-level covariates. Here we evaluate a combination of methods and existing long-term monitoring data to identify patterns of cestode infections in gray wolves in Yellowstone National Park. Our goals were: (1) Identify the species and apparent prevalence of cestodes infecting Yellowstone wolves; (2) Assess the relationships between wolf biological and social characteristics and cestode infections; (3) Examine how wolf samples were affected by environmental conditions with respect to the success of individual genotyping. We collected over 200 wolf scats from 2018-2020 and conducted laboratory analyses including individual wolf genotyping, sex identification, cestode identification, and fecal glucocorticoid measurements. Wolf genotyping success rate was 45%, which was higher in the winter but decreased with higher precipitation and as more time elapsed between scat deposit and collection. One cestode species was detected in 28% of all fecal samples, and 38% of known individuals. The most common infection was Echinococcus granulosus sensu lato (primarily E. canadensis). Adult wolves had 4x greater odds of having a cestode infection than pups, as well as wolves sampled in the winter. Our methods provide an alternative approach to estimate cestode prevalence and to linking parasites to known individuals in a wild host system, but may be most useful when employed in existing study systems and when field collections are designed to minimize the time between fecal deposition and collection.


Assuntos
Cestoides , Infecções por Cestoides , Helmintos , Parasitos , Lobos , Animais , Lobos/parasitologia , Prevalência , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologia
3.
Science ; 378(6617): 300-303, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264784

RESUMO

We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (Canis lupus) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent.


Assuntos
Surtos de Doenças , Vírus da Cinomose Canina , Cinomose , Cor de Cabelo , Interações Hospedeiro-Patógeno , Preferência de Acasalamento Animal , Seleção Sexual , Lobos , Animais , Estudos Transversais , América do Norte , Lobos/genética , Lobos/virologia , Cinomose/epidemiologia , Cinomose/genética , Prevalência , Alelos , Interações Hospedeiro-Patógeno/genética , Cor de Cabelo/genética
4.
Ecol Lett ; 25(8): 1760-1782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35791088

RESUMO

Pathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an 'epidemiological landscape' connecting the environment to specific locations where transmissions occur. Conventionally, the epidemiological landscape has been described in terms of the geographical coordinates where hosts or pathogens are located. We advocate for an alternative approach that relates those locations to attributes of the local environment. Environmental descriptions can strengthen epidemiological forecasts by allowing for predictions even when local geographical data are not available. Environmental predictions are more accessible than ever thanks to new tools from movement ecology, and we introduce a 'movement-pathogen pace of life' heuristic to help identify aspects of movement that have the most influence on spatial epidemiology. By linking pathogen transmission directly to the environment, the epidemiological landscape offers an efficient path for using environmental information to inform models describing when and where transmission will occur.


Assuntos
Transmissão de Doença Infecciosa , Ecologia , Epidemiologia , Movimento , Geografia
5.
Ecol Appl ; 32(5): e2600, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343018

RESUMO

Novel approaches to quantifying density and distributions could help biologists adaptively manage wildlife populations, particularly if methods are accurate, consistent, cost-effective, rapid, and sensitive to change. Such approaches may also improve research on interactions between density and processes of interest, such as disease transmission across multiple populations. We assess how satellite imagery, unmanned aerial system (UAS) imagery, and Global Positioning System (GPS) collar data vary in characterizing elk density, distribution, and count patterns across times with and without supplemental feeding at the National Elk Refuge (NER) in the US state of Wyoming. We also present the first comparison of satellite imagery data with traditional counts for ungulates in a temperate system. We further evaluate seven different aggregation metrics to identify the most consistent and sensitive metrics for comparing density and distribution across time and populations. All three data sources detected higher densities and aggregation locations of elk during supplemental feeding than non-feeding at the NER. Kernel density estimates (KDEs), KDE polygon areas, and the first quantile of interelk distances detected differences with the highest sensitivity and were most highly correlated across data sources. Both UAS and satellite imagery provide snapshots of density and distribution patterns of most animals in the area at lower cost than GPS collars. While satellite-based counts were lower than traditional counts, aggregation metrics matched those from UAS and GPS data sources when animals appeared in high contrast to the landscape, including brown elk against new snow in open areas. UAS counts of elk were similar to traditional ground-based counts on feed grounds and are the best data source for assessing changes in small spatial extents. Satellite, UAS, or GPS data can provide appropriate data for assessing density and changes in density from adaptive management actions. For the NER, where high elk densities are beneath controlled airspace, GPS collar data will be most useful for evaluating how management actions, including changes in the dates of supplemental feeding, influence elk density and aggregation across large spatial extents. Using consistent and sensitive measures of density may improve research on the drivers and effects of density within and across a wide range of species.


Assuntos
Cervos , Animais , Animais Selvagens , Sistemas de Informação Geográfica , Imagens de Satélites , Neve
6.
J Anim Ecol ; 91(7): 1373-1384, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994978

RESUMO

Predators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased. The interaction of age-specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics. We hypothesize that predator cleansing effects will be greater when the disease and predation occur in the same prey age groups. We examine the predator cleansing effect using a model where both vulnerability to predators and pathogen prevalence vary with age. We tailor this model to chronic wasting disease (CWD) in mule deer and elk populations in the Greater Yellowstone Ecosystem, with empirical data from Yellowstone grey wolves and cougars. Model results suggest that under moderate, yet realistic, predation pressure from cougars and wolves independently, predators may decrease CWD outbreak size substantially and delay the accumulation of symptomatic deer and elk. The magnitude of this effect is driven by the ability of predators to selectively remove late-stage CWD infections that are likely the most responsible for transmission, but this may not be the age class they typically select. Thus, predators that select for infected young adults over uninfected juveniles have a stronger cleansing effect, and these effects are strengthened when transmission rates increase with increasing prey morbidity. There are also trade-offs from a management perspective-that is, increasing predator kill rates can result in opposing forces on prey abundance and CWD prevalence. Our modelling exploration shows that predators have the potential to reduce prevalence in prey populations when prey age and disease severity are considered, yet the strength of this effect is influenced by predators' selection for demography or body condition. Current CWD management focuses on increasing cervid hunting as the primary management tool, and our results suggest predators may also be a useful tool under certain conditions, but not necessarily without additional impacts on host abundance and demography. Protected areas with predator populations will play a large role in informing the debate over predator impacts on disease.


Assuntos
Cervos , Lobos , Fatores Etários , Animais , Doença Crônica , Ecossistema , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório
7.
Transbound Emerg Dis ; 69(3): 927-942, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756055

RESUMO

Sarcoptic mange, a skin infestation caused by the mite Sarcoptes scabiei, is an emerging disease for some species of wildlife, potentially jeopardizing their welfare and conservation. Sarcoptes scabiei has a near-global distribution facilitated by its forms of transmission and use of a large diversity of host species (many of those with broad geographic distribution). In this review, we synthesize the current knowledge concerning the geographic and host taxonomic distribution of mange in wildlife, the epidemiological connections between species, and the potential threat of sarcoptic mange for wildlife conservation. Recent sarcoptic mange outbreaks in wildlife appear to demonstrate ongoing geographic spread, increase in the number of hosts and increased virulence. Sarcoptic mange has been reported in at least 12 orders, 39 families and 148 species of domestic and wild mammals, making it one of the most generalist ectoparasites of mammals. Taxonomically, the orders with most species found infested so far include Perissodactyla (67% species from the entire order), Artiodactyla (47%), and Diprotodontia (67% from this order). This suggests that new species from these mammal orders are likely to suffer cross-species transmission and be reported positive to sarcoptic mange as surveillance improves. We propose a new agenda for the study of sarcoptic mange in wildlife, including the study of the global phylogeography of S. scabiei, linkages between ecological host traits and sarcoptic mange susceptibility, immunology of individuals and species, development of control strategies in wildlife outbreaks and the effects of global environmental change in the sarcoptic mange system. The ongoing transmission globally and sustained spread among areas and wildlife species make sarcoptic mange an emerging panzootic in wildlife. A better understanding of sarcoptic mange could illuminate the aspects of ecological and evolutionary drivers in cross-species transmission for many emerging diseases.


Assuntos
Escabiose , Animais , Animais Selvagens/parasitologia , Surtos de Doenças , Humanos , Mamíferos , Sarcoptes scabiei , Escabiose/epidemiologia , Escabiose/veterinária
8.
Ecol Evol ; 11(21): 14366-14382, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765112

RESUMO

A respiratory disease epizootic at the National Bison Range (NBR) in Montana in 2016-2017 caused an 85% decline in the bighorn sheep population, documented by observations of its unmarked but individually identifiable members, the subjects of an ongoing long-term study. The index case was likely one of a small group of young bighorn sheep on a short-term exploratory foray in early summer of 2016. Disease subsequently spread through the population, with peak mortality in September and October and continuing signs of respiratory disease and sporadic mortality of all age classes through early July 2017. Body condition scores and clinical signs suggested that the disease affected ewe groups before rams, although by the end of the epizootic, ram mortality (90% of 71) exceeded ewe mortality (79% of 84). Microbiological sampling 10 years to 3 months prior to the epizootic had documented no evidence of infection or exposure to Mycoplasma ovipneumoniae at NBR, but during the epizootic, a single genetic strain of M. ovipneumoniae was detected in affected animals. Retrospective screening of domestic sheep flocks near the NBR identified the same genetic strain in one flock, presumptively the source of the epizootic infection. Evidence of fatal lamb pneumonia was observed during the first two lambing seasons following the epizootic but was absent during the third season following the death of the last identified M. ovipneumoniae carrier ewe. Monitoring of life-history traits prior to the epizootic provided no evidence that environmentally and/or demographically induced nutritional or other stress contributed to the epizootic. Furthermore, the epizootic occurred despite proactive management actions undertaken to reduce risk of disease and increase resilience in this population. This closely observed bighorn sheep epizootic uniquely illustrates the natural history of the disease including the (presumptive) source of spillover, course, severity, and eventual pathogen clearance.

10.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311513

RESUMO

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho Corporal
11.
PLoS One ; 16(4): e0249521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831062

RESUMO

Supplemental feeding of wildlife is a common practice often undertaken for recreational or management purposes, but it may have unintended consequences for animal health. Understanding cryptic effects of diet supplementation on the gut microbiomes of wild mammals is important to inform conservation and management strategies. Multiple laboratory studies have demonstrated the importance of the gut microbiome for extracting and synthesizing nutrients, modulating host immunity, and many other vital host functions, but these relationships can be disrupted by dietary perturbation. The well-described interplay between diet, the microbiome, and host health in laboratory and human systems highlights the need to understand the consequences of supplemental feeding on the microbiomes of free-ranging animal populations. This study describes changes to the gut microbiomes of wild elk under different supplemental feeding regimes. We demonstrated significant cross-sectional variation between elk at different feeding locations and identified several relatively low-abundance bacterial genera that differed between fed versus unfed groups. In addition, we followed four of these populations through mid-season changes in supplemental feeding regimes and demonstrated a significant shift in microbiome composition in a single population that changed from natural forage to supplementation with alfalfa pellets. Some of the taxonomic shifts in this population mirrored changes associated with ruminal acidosis in domestic livestock. We discerned no significant changes in the population that shifted from natural forage to hay supplementation, or in the populations that changed from one type of hay to another. Our results suggest that supplementation with alfalfa pellets alters the native gut microbiome of elk, with potential implications for population health.


Assuntos
Doenças dos Animais/prevenção & controle , Ração Animal/análise , Bactérias/classificação , Cervos/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Animais Selvagens , Bactérias/crescimento & desenvolvimento , Cervos/microbiologia
12.
Ecol Evol ; 11(6): 2488-2502, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767816

RESUMO

Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.

13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649227

RESUMO

The population structure of social species has important consequences for both their demography and transmission of their pathogens. We develop a metapopulation model that tracks two key components of a species' social system: average group size and number of groups within a population. While the model is general, we parameterize it to mimic the dynamics of the Yellowstone wolf population and two associated pathogens: sarcoptic mange and canine distemper. In the initial absence of disease, we show that group size is mainly determined by the birth and death rates and the rates at which groups fission to form new groups. The total number of groups is determined by rates of fission and fusion, as well as environmental resources and rates of intergroup aggression. Incorporating pathogens into the models reduces the size of the host population, predominantly by reducing the number of social groups. Average group size responds in more subtle ways: infected groups decrease in size, but uninfected groups may increase when disease reduces the number of groups and thereby reduces intraspecific aggression. Our modeling approach allows for easy calculation of prevalence at multiple scales (within group, across groups, and population level), illustrating that aggregate population-level prevalence can be misleading for group-living species. The model structure is general, can be applied to other social species, and allows for a dynamic assessment of how pathogens can affect social structure and vice versa.


Assuntos
Cinomose , Modelos Biológicos , Escabiose , Lobos , Animais , Cinomose/epidemiologia , Cinomose/transmissão , Dinâmica Populacional , Prevalência , Escabiose/epidemiologia , Escabiose/transmissão , Escabiose/veterinária
14.
J Anim Ecol ; 90(5): 1264-1275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630313

RESUMO

Wildlife migrations provide important ecosystem services, but they are declining. Within the Greater Yellowstone Ecosystem (GYE), some elk Cervus canadensis herds are losing migratory tendencies, which may increase spatiotemporal overlap between elk and livestock (domestic bison Bison bison and cattle Bos taurus), potentially exacerbating pathogen transmission risk. We combined disease, movement, demographic and environmental data from eight elk herds in the GYE to examine the differential risk of brucellosis transmission (through aborted foetuses) from migrant and resident elk to livestock. For both migrants and residents, we found that transmission risk from elk to livestock occurred almost exclusively on private ranchlands as opposed to state or federal grazing allotments. Weather variability affected the estimated distribution of spillover risk from migrant elk to livestock, with a 7%-12% increase in migrant abortions on private ranchlands during years with heavier snowfall. In contrast, weather variability did not affect spillover risk from resident elk. Migrant elk were responsible for the majority (68%) of disease spillover risk to livestock because they occurred in greater numbers than resident elk. On a per-capita basis, however, our analyses suggested that resident elk disproportionately contributed to spillover risk. In five of seven herds, we estimated that the per-capita spillover risk was greater from residents than from migrants. Averaged across herds, an individual resident elk was 23% more likely than an individual migrant elk to abort on private ranchlands. Our results demonstrate links between migration behaviour, spillover risk and environmental variability, and highlight the utility of integrating models of pathogen transmission and host movement to generate new insights about the role of migration in disease spillover risk. Furthermore, they add to the accumulating body of evidence across taxa that suggests that migrants and residents should be considered separately during investigations of wildlife disease ecology. Finally, our findings have applied implications for elk and brucellosis in the GYE. They suggest that managers should prioritize actions that maintain spatial separation of elk and livestock on private ranchlands during years when snowpack persists into the risk period.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Animais , Animais Selvagens , Brucella abortus , Bovinos , Ecossistema
15.
Sci Rep ; 11(1): 3722, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580121

RESUMO

The presence of many pathogens varies in a predictable manner with latitude, with infections decreasing from the equator towards the poles. We investigated the geographic trends of pathogens infecting a widely distributed carnivore: the gray wolf (Canis lupus). Specifically, we investigated which variables best explain and predict geographic trends in seroprevalence across North American wolf populations and the implications of the underlying mechanisms. We compiled a large serological dataset of nearly 2000 wolves from 17 study areas, spanning 80° longitude and 50° latitude. Generalized linear mixed models were constructed to predict the probability of seropositivity of four important pathogens: canine adenovirus, herpesvirus, parvovirus, and distemper virus-and two parasites: Neospora caninum and Toxoplasma gondii. Canine adenovirus and herpesvirus were the most widely distributed pathogens, whereas N. caninum was relatively uncommon. Canine parvovirus and distemper had high annual variation, with western populations experiencing more frequent outbreaks than eastern populations. Seroprevalence of all infections increased as wolves aged, and denser wolf populations had a greater risk of exposure. Probability of exposure was positively correlated with human density, suggesting that dogs and synanthropic animals may be important pathogen reservoirs. Pathogen exposure did not appear to follow a latitudinal gradient, with the exception of N. caninum. Instead, clustered study areas were more similar: wolves from the Great Lakes region had lower odds of exposure to the viruses, but higher odds of exposure to N. caninum and T. gondii; the opposite was true for wolves from the central Rocky Mountains. Overall, mechanistic predictors were more informative of seroprevalence trends than latitude and longitude. Individual host characteristics as well as inherent features of ecosystems determined pathogen exposure risk on a large scale. This work emphasizes the importance of biogeographic wildlife surveillance, and we expound upon avenues of future research of cross-species transmission, spillover, and spatial variation in pathogen infection.


Assuntos
Exposição Ambiental , Modelos Epidemiológicos , Infecções/veterinária , Lobos/virologia , Animais , Efeitos Antropogênicos , Feminino , Humanos , Infecções/epidemiologia , Infecções/etiologia , Infecções/transmissão , Masculino , América do Norte/epidemiologia , Estudos Soroepidemiológicos , Lobos/parasitologia
16.
J Anim Ecol ; 90(1): 87-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32654133

RESUMO

The spatial organization of a population can influence the spread of information, behaviour and pathogens. Group territory size and territory overlap and components of spatial organization, provide key information as these metrics may be indicators of habitat quality, resource dispersion, contact rates and environmental risk (e.g. indirectly transmitted pathogens). Furthermore, sociality and behaviour can also shape space use, and subsequently, how space use and habitat quality together impact demography. Our study aims to identify factors shaping the spatial organization of wildlife populations and assess the impact of epizootics on space use. We further aim to explore the mechanisms by which disease perturbations could cause changes in spatial organization. Here we assessed the seasonal spatial organization of Serengeti lions and Yellowstone wolves at the group level. We use network analysis to describe spatial organization and connectivity of social groups. We then examine the factors predicting mean territory size and mean territory overlap for each population using generalized additive models. We demonstrate that lions and wolves were similar in that group-level factors, such as number of groups and shaped spatial organization more than population-level factors, such as population density. Factors shaping territory size were slightly different than factors shaping territory overlap; for example, wolf pack size was an important predictor of territory overlap, but not territory size. Lion spatial networks were more highly connected, while wolf spatial networks varied seasonally. We found that resource dispersion may be more important for driving territory size and overlap for wolves than for lions. Additionally, canine distemper epizootics may have altered lion spatial organization, highlighting the importance of including infectious disease epizootics in studies of behavioural and movement ecology. We provide insight about when we might expect to observe the impacts of resource dispersion, disease perturbations, and other ecological factors on spatial organization. Our work highlights the importance of monitoring and managing social carnivore populations at the group level. Future research should elucidate the complex relationships between demographics, social and spatial structure, abiotic and biotic conditions and pathogen infections.


Assuntos
Carnívoros , Leões , Lobos , Animais , Ecossistema , Estações do Ano
17.
Sci Rep ; 10(1): 7082, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321990

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Rep ; 9(1): 15318, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653889

RESUMO

Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.


Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Cabras/microbiologia , Mycoplasma ovipneumoniae/genética , Ovinos/microbiologia , Animais , Biodiversidade , Geografia , Interações Hospedeiro-Patógeno/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Filogenia , Recombinação Genética/genética , Estados Unidos
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180342, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31401951

RESUMO

Spillover of a pathogen from a wildlife reservoir into a human or livestock host requires the pathogen to overcome a hierarchical series of barriers. Interventions aimed at one or more of these barriers may be able to prevent the occurrence of spillover. Here, we demonstrate how interventions that target the ecological context in which spillover occurs (i.e. ecological interventions) can complement conventional approaches like vaccination, treatment, disinfection and chemical control. Accelerating spillover owing to environmental change requires effective, affordable, durable and scalable solutions that fully harness the complex processes involved in cross-species pathogen spillover. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Zoonoses/prevenção & controle , Animais , Animais Selvagens , Humanos , Modelos Biológicos
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180343, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31401952

RESUMO

Managing pathogen spillover at the wildlife-livestock interface is a key step towards improving global animal health, food security and wildlife conservation. However, predicting the effectiveness of management actions across host-pathogen systems with different life histories is an on-going challenge since data on intervention effectiveness are expensive to collect and results are system-specific. We developed a simulation model to explore how the efficacies of different management strategies vary according to host movement patterns and epidemic growth rates. The model suggested that fast-growing, fast-moving epidemics like avian influenza were best-managed with actions like biosecurity or containment, which limited and localized overall spillover risk. For fast-growing, slower-moving diseases like foot-and-mouth disease, depopulation or prophylactic vaccination were competitive management options. Many actions performed competitively when epidemics grew slowly and host movements were limited, and how management efficacy related to epidemic growth rate or host movement propensity depended on what objective was used to evaluate management performance. This framework offers one means of classifying and prioritizing responses to novel pathogen spillover threats, and evaluating current management actions for pathogens emerging at the wildlife-livestock interface. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes/veterinária , Gado , Zoonoses/prevenção & controle , Animais , Doenças Transmissíveis Emergentes/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA